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Exciton instability in graphene bilayer systems is studied in the case of a short-ranged Coulomb interaction
and a finite voltage difference between the layers. Self-consistent exciton gap equations are derived and solved
numerically and analytically under controlled approximation. We obtain that a critical strength of the Coulomb
interaction exists for the formation of excitons. The critical strength depends on the amount of voltage differ-
ence between the layers and on the interlayer hopping parameter.
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I. INTRODUCTION

Graphene, layers of two-dimensional honeycomb array of
carbon atoms, has attracted much interest these last few years
due to its recent experimental accessibility1–3 and a wide
variety of interesting properties.4–6 Both the single-layer and
the multilayer graphenes are studied intensely. Much of the
peculiar properties of the graphene layers arise from the en-
ergy spectrum near the so-called Dirac nodal points and the
nontrivial topological structure of the wave functions around
them.1,7

As the engineering application of the graphene layers at-
tracts increasing significance, we need to explore, experi-
mentally and theoretically, ways to enrich graphene’s electri-
cal properties and to control them. One way to achieve some
control over the electrical properties is to change the number
of layers and/or the bias applied across the layers. A recent
experimental realization of the biased graphene bilayer is
such an example.8–10 By applying a gate bias across the two-
layered graphene, the authors of Refs. 8 and 10 have ob-
served a tunable energy gap varying with the bias �see Fig. 1
for the bilayer graphene energy bands in the presence of
bias�. The bias can also potentially control the formation of
excitons. Since the applied bias leads to the charge imbal-
ance in the two layers, it is natural to suspect that the Cou-
lomb attraction of the excess electrons and holes on opposite
layers would lead to an exciton instability similar to the situ-
ations considered in an earlier literature.11–13 If so, it will
provide an additional control over the graphene as the for-
mation of excitons is known to affect the electrical properties
significantly.12,14

Recent works on the exciton instability in a single-layer
graphene are based on the Dirac Hamiltonian
description.15,16 The exciton gap is derived and solved
through a self-consistent equation similar to the one appear-
ing in the chiral symmetry-breaking phenomenon.17 It was
shown that an exciton can be formed under a strong long-
ranged particle-hole interaction.18 Exciton can also be
formed in a single-layer graphene through the mechanism of
magnetic catalysis of dynamical mass generation, as pointed
out in Ref. 19. This work showed that the magnetic catalysis
can induce exciton condensation even for weak particle-hole
coupling.20,21 These results are obtained in the framework of

quantum electrodynamics �QED� deduced from the linear en-
ergy spectrum of the graphene monolayer.

In the case of a bilayer, additional excitonic channels be-
come possible as the excess electrons and holes from the two
layers can form a “real-space” exciton. In this paper, we
consider the possibility of an excitonic instability in the bi-
ased graphene bilayer in the framework of Hartree-Fock
theory. A conventional Hartree-Fock treatment had been used
in the past to understand the exciton formation in semicon-
ductors with success.14 It is shown that the exciton can be
formed if the strength of the Coulomb interaction U is larger
than the threshold value Uc, which, for realistic graphene
parameters, is comparable to the intralayer hopping energy.
The threshold Uc is, in turn, bias dependent and can be tuned
to a minimum value for an optimal bias Vo. Moreover, a
reduction of the interlayer hopping, perhaps through interca-
lation, is shown to greatly reduce the threshold value Uc.

In identifying excitonic channels, we consider two pos-
sible scenarios. One is the pairing through the shortest-
distance neighbors between the layers �a-d dimer in Fig. 2�,
and the other, through the second shortest-distance neighbors
between the layers �a-c and b-d dimers in Fig. 2�. For each
scenario we identify the threshold interaction strength Uc,
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FIG. 1. Energy spectrum for the graphene bilayer with
t=2.9 eV, t� / t=0.052, and V / t=0.05. Ek

�− / t in full line and Ek
�+ / t

in dashed line. See text for definition of the energy branches labeled
by Ek

��.
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and its dependence on the bias and the interlayer hopping
parameter.

This work is divided into the following sequence. Section
II describes the graphene bilayer and its model Hamiltonian,
including the short-range Coulomb interaction across the lay-
ers. Two excitonic channels, which we will consider in this
paper, are introduced. In the following two sections, each of
these possibilities is examined in detail using the appropriate
gap equations and their solutions. The work is summarized in
Sec. V. Some of the technical aspects are summarized in the
Appendix.

II. FORMULATION OF THE EXCITON PROBLEM

Graphene bilayer is a two honeycomb array stacked in a
Bernal arrangement, as depicted in Fig. 2. In each layer the
electrons can hop between nearest-neighbor carbon atoms
through � orbitals with energy t, which is typically assumed
to be at 2.9 eV. In a Bernal stacking, electrons are allowed to
do interlayer hopping through the a-d dimers with the hop-
ping energy given as 2t� and with the t� / t given as approxi-
mately 0.052. Here a dimer is defined as the pair of carbon
atoms from the adjacent layers stacked along the c axis.

In writing down the Hamiltonian appropriate for the
graphene bilayer, we denote the electron operators for the
two sublattices in the lower layer by ai and bi, and those in
the upper layer by ci and di. We assume a symmetric doping
due to the external bias �V with excess electrons and holes
on the lower and upper graphene layers, respectively. We are
interested in the formation of the same-spin electron-hole
exciton here; hence the spin degree of freedom � will be
dropped. The Hamiltonian of the graphene bilayer, in the
absence of the Coulomb interaction. reads

H0 = − t�
ij

�ai
†bj + bj

†ai + ci
†dj + dj

†ci� − 2t��
i

�ai
†di + di

†ai�

+ V�
i

�ci
†ci + di

†di − ai
†ai − bi

†bi� . �1�

After the diagonalization �derivation is given in Appendix
A�, Eq. �1� is transformed to

H0 = k � ��k
† �k

† �k
† �k

† ��
Ek

++ 0 0 0

0 Ek
+− 0 0

0 0 Ek
−− 0

0 0 0 Ek
−+
��

�k

�k

�k

�k

� ,

�2�

where ��k ,�k ,�k ,�k� now serve to define the eigenstates. The
energy spectra depicted in Fig. 1 are the ones given by

Ek
�� = � �	k

2 + 2t�
2 + V2 � 2�t�

4 + 	k
2�t�

2 + V2� . �3�

The bare kinetic energy 	k within the monolayer reads
	k= t���=1

3 eik.e��, where e� are the nearest-neighbor vectors of
the graphene monolayer: e1= �1,0�, e2= �−1 /2,�3 /2�, and
e3= �−1 /2,−�3 /2�.

The two independent nodal points K1�2�, where the bare
electron spectrum 	k vanishes, are chosen as K1= �0, 4�

3�3
�

�K2=−K1� in the basis �ex ,ey� in the Brillouin zone. The sum
��eik.e� is approximately given by −�3 /2��ky − ikx� near K1
and by �3 /2��ky + ikx� near K2.

The bottom of the lower conduction band, Ek
+−, occurs at k

points where 	k
2= �	k

2�m=V2�V2+2t�
2 � / �V2+ t�

2 �, with the

energy Em= t�V /�t�
2 +V2. The energy gap separating the va-

lence and conduction bands is twice this value. The energy
difference between the two conduction bands or the two

valence bands is �V2+2t�
2 −V at 	k=0 and

��4�V4+ t�
4 �+9V2t�

2 	 / �V2+ t�
2 �−Vt� /�V2+ t�

2 at 	k= �	k�m.
These two quantities approach t�

2 /V and 2V, respectively, as
V / t�→
. Generally, the presence of both interlayer hopping
and the bias is essential in producing the gaps separating the
various bands, as depicted in Fig. 1.

In describing the exciton formation, we propose to use the
interlayer interaction truncated to the second-nearest neigh-
bors as

VC = U1�
i

na,ind,i + U2�
i�

�na,inc,i−e�
+ nb,ind,i−e�

� . �4�

The local electronic densities are given by na,i=ai
†ai, etc. The

total Hamiltonian then reads H=H0+VC. The U1 and U2
terms are responsible for the exciton formation across the
a-d dimer �nearest neighbor�, and the a-c and b-d dimers
�second-nearest neighbor�, respectively.

At this point, several mean-field decoupling strategies
present themselves. The average 
ai

†di� might be a candidate
order parameter for the exciton pairing but this quantity is
nonzero even in the absence of any interlayer interaction,
provided the interlayer tunneling t� remains nonzero. Only
when t�=0 does this average become the exact order param-
eter. Nevertheless, one can use the “difference” �to be quan-
tified in the next section� of 
ai

†di� obtained in the presence
and absence of excitons as the order parameter. This is the
strategy we adopt to discuss the a-d dimer exciton formation.

For the second-neighbor interaction, we could think of
averages such as 
ai

†ci−e�
� and 
bi

†di−e�
� as possible excitonic

order parameters. Again, these averages are nonzero even in
the absence of the interaction VC. However, since averages

ai

†ci−e�
� for �=1,2 ,3 are related by the Z3 symmetry, one

could form linear combinations ��u�
ai
†ci−e�

�, which re-
mains zero in the noninteracting case but becomes a nonzero
value once the interaction U2 is turned on and excitons are
formed. The appropriate linear combination is easily identi-
fied. For the second-nearest-neighbor pairing, the excitonic
order is directly related to the loss of Z3 rotational symmetry
of the lattice.

Finally, we assume that at low energy the main mecha-
nism of the exciton formation is due to the hybridization of
the upper valence �Ek

+−� and lower conduction bands �Ek
−−�

FIG. 2. Graphene bilayer �Bernal stacking�. The a-d dimer is
depicted as dashed lines.
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while the two outlying ones, Ek
++ and Ek

−+, remain as specta-
tors. Accordingly, the following reduced Hamiltonian may be
used instead of Eq. �2�:

H� = �
k

Ek��k
†�k − �k

†�k�, Ek = Ek
+− = − Ek

−−. �5�

Note that the two outlying bands are separated from the two
inner ones by an energy difference that grows as V when
V / t� is sufficiently large. The truncation scheme is expected
to be valid when the bias V far exceeds the interlayer tunnel-
ing energy; a situation easily realized in tunable gate
systems.8,10 The interlayer interaction �Eq. �4�	 will be trun-
cated in the same subspace spanned by ��k ,�k�. Such trun-
cation greatly simplifies the algebra in subsequent discus-
sions.

III. FIRST-NEIGHBOR EXCITON PAIRING

The first-neighbor interaction part reads

VC�U1� = U1�
i

na,ind,i = U1 �
qkk�

ak+q
† akdk�−q

† dk�. �6�

According to our truncation scheme, the various operators
can be expanded in terms of �k and �k operators, correspond-
ing to the lower conduction and upper valence bands, respec-
tively;

ak = U12�k��k + U13�k��k,

dk = U42�k��k + U43�k��k.

The 4�4 unitary matrix U diagonalizing the Hamiltonian
�1� �see Appendix A for a description of U� is used. The
first-neighbor Coulomb interaction in the truncated space
reads

VC�U1� = U1 �
qkk�

�U12
� �k + q��k+q

† + U13
� �k + q��k+q

† 	

��U12�k��k + U13�k��k	

��U42
� �k� − q��k�−q

† + U43
� �k� − q��k�−q

† 	

��U42�k���k� + U43�k���k�	 . �7�

As our main concern is to explore the possibility of the ex-
citonic order represented by nonzero 
�k

†�k�, we will only
keep terms from Eq. �7� involving an even number of � and
� operators. In a Hartree-Fock approximation, the mean-field
Hamiltonian, using the exciton order parameter for the
�−� hybridization, can be written down as

VC�U1� = − �
k

��k�k
†�k + �k

��k
†�k� . �8�

The exciton gap �k is related to the exciton order parameter

�k

†�k� through

�k = U1��
q

U12�q�U43
� �q�
�q

†�q�U12
� �k�U43�k�

+ U1��
q

U13
� �q�U42�q�
�q

†�q�U13�k�U42
� �k�

− U1��
q

U42�q�U43
� �q�
�q

†�q�U12
� �k�U13�k�

− U1��
q

U12�q�U13
� �q�
�q

†�q�U42
� �k�U43�k� . �9�

Combining the kinetic part and the mean-field Coulomb in-
teraction VC, one obtains the full Hamiltonian

H = �
k

Ek��k
†�k − �k

†�k� − �
k

��k�k
†�k + �k

��k
†�k� . �10�

The Hamiltonian �10� can be further diagonalized by the
2�2 unitary rotation

��k

�k
� = �eiykcos 5k eiyksin 5k

− sin 5k cos 5k
��Bk

Ck
� , �11�

with eiyk =�k / ��k�, cos 25k=Ek /Ek, and sin 25k= ��k� /Ek.
In terms of the eigenoperators Bk and Ck, and the
eigenvalue Ek=�Ek

2+ ��k�2, the Hamiltonian �10� reads
H=�kEk�Bk

†Bk−Ck
†Ck�. The hybridization is given by


�k
†�k� =

�k

2Ek
tanh��Ek

2
� . �12�

By inserting expressions of the unitary matrix elements �Eq.
�A1�	 and the hybridization �Eq. �12�	 in Eq. �9�, one readily
finds that the phase of the gap function is dictated in the
manner

�k = e−i�k��k�,ei�k =
��

eik·e�

���
eik·e��

. �13�

The phase factor in the excitonic gap has a winding of 2�
around one Dirac point and −2� around the other. The total
winding around the circumference of the full Brillouin zone
is therefore zero.

A general connection between the phase singularity of the
wave function and the singularities in the order parameters
was considered in Ref. 22. This discussion can also be ap-
plied to excitonic order. In two dimensions, the topological
structure discussed in Ref. 22 is defined as the total number
of phase winding for the whole Brillouin zone, which in this
case is zero. In fact, the phase winding around K1 and K2 in
Eq. �13� can be removed by a gauge transformation,23

�k� = �ke
i�k, �k� = �k. �14�

With this transformation, 
�k�
†�k�� becomes real, and the

phase vanishes at K1 and K2.
Taking out the phase, the gap �Eq. �9�	 becomes
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��k� =
U1

16 �
p

�1 − sin 22p��1 − sin 22k�

��1 + cos�24p − 24k�	
��p�
Ep

tanh��Ep

2
� . �15�

The various factors are defined in Appendix A. The equation
can be solved numerically for given values of U and V, and
the interlayer hopping parameter t�. The numerical solution
of Eq. �15� is depicted in Fig. 3. Regarding the momentum
dependence of the exciton gap, we see that it increases from
zero at the nodal points to reach saturation far from K1 and
K2.

Figure 4 shows the solution of Eq. �15� for a range of U1
and various values of the bias V. At zero temperature a
second-order phase transition of the exciton gap takes place
with respect to the Coulomb interaction U1 for each given
bias V. This threshold value U1c, at which excitons begin to
form, is a function of V and is shown as a green line in Fig.
4. U1c�V� reaches a minimal value of U1c / t�3.5 for an “op-

timal” choice of the bias V1o that is found at V1o / t�1.
Interestingly, the dependence on the bias U1c�V� appears

to be related to the behavior of the exciton gap �k=0 obtained
far away from the Dirac points at k=0, as shown in Fig. 4.
The nonmonotonic dependence of the gap value on V is ap-
parent. A similar behavior is observed in the conduction-
valence-band energy gap, as exemplified in the Brillouin-
zone average 
Ek

+−�=�k�BZEk
+− shown in Fig. 5.

Using Eq. �15� we can deduce the dependence of Uc�V�
on the interlayer parameter t�. As Fig. 6 shows, the threshold
value decreases with t� and tends to zero as t� / t→0. Re-
ducing the interlayer hopping parameter would reduce the
threshold U1c of the short-ranged Coulomb interaction above
in which excitons can form. Intercalation of layers of non-
doping and insulating atoms between the two carbon layers
would reduce significantly the interlayer hopping parameter
toward zero. The concomitant reduction in the Coulomb in-
teraction U1 with distance will be sufficiently slow compared
to the exponential decay of t�, so that the regime
U�Uc�V� can be attained for a range of bias around V1o.
Our analysis suggests that searching for ways to reduce the
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interlayer hopping parameter experimentally would shed
more light on the physics of exciton formation in graphene
bilayer.

Finally, Fig. 7 depicts the behavior of the critical tempera-
ture Tc with respect to the Coulomb interaction U and for
various hopping parameters t�.

IV. SECOND-NEIGHBOR EXCITON PAIRING

Our approach in the previous section was based on the
interaction with U2=0. The average 
ai

†di� read


ai
†di� = �

k


ak
†dk�

= �
k

�U12
� �k�U42�k�
�k

†�k� + U13
� �k�U43�k�
�k

†�k�	

+ �
k

�U12
� �k�U43�k�
�k

†�k� + U13
� �k�U42�k�
�k

†�k�	 ,

�16�

in the scheme where the lowest and highest energy bands
were truncated out. This average is nonzero even without the
excitons at arbitrary temperature and is not a good measure
of the possible phase transition in the model. Instead, we
relied on the fact that 
�k

†�k� is zero unless the excitons exist,
and used this average as a measure of the excitonic order and
excitonic phase transition in the model. Indeed this order
parameter vanished at high enough temperature and/or weak
enough coupling, allowing us to identify the critical points,
and so forth.

In this section, we search for an excitonic order parameter
defined in real space, which also vanishes identically for a
nonexcitonic phase. The averages 
ci−e�

† ai� and 
di−e�

† bi� are
given by


ci−e�

† ai� = �
k

eik·e�e−i�kf�k� ,


di−e�

† bi� = − �
k

eik·e�e−i�kf�k� , �17�

in the noninteracting limit �Eq. �2�	. The three unit vectors e�

were defined earlier as the difference of the nearest-neighbor
positions in a given graphene layer. Here f�k� is a function
whose detailed form is unimportant to us. The combination
e−i�kf�k� is symmetric under the 120° rotation of the k vector,
which in turn implies that 
ci−e1

† ai�= 
ci−e2

† ai�= 
ci−e3

† ai�, and

di−e1

† bi�= 
di−e2

† bi�= 
di−e3

† bi�.
This observation suggests a strategy for defining an ap-

propriate order parameter. First define hi�=ci−e�

† ai and gi�

=di−e�

† bi, then one can form the following linear combina-
tions:

�i
�1� = hi1 −

1

2
�hi2 + hi3�, �i

�1� = gi1 −
1

2
�gi2 + gi3� ,

�i
�2� = hi2 −

1

2
�hi1 + hi3�, �i

�2� = gi2 −
1

2
�gi1 + gi3� ,

and

��3� = hi3 −
1

2
�hi1 + hi2�,�i

�3� = gi3 −
1

2
�gi1 + gi2� . �18�

The operators �i
��� and �i

��� have a zero average value in the
nonexcitonic phase, U2=0, due to the underlying Z3 symme-
try. In turn, nonzero value of one of the averages implies the
Z3 symmetry is spontaneously broken.

The short-ranged Coulomb interaction �4� with U1=0 and
U2�0 will render the mean-field Hamiltonian

− U2�
i,�

�
ai
†ci−e�

�ci−e�

† ai + h.c.�

− U2�
i,�

�
bi
†di−e�

�di−e�

† bi + h . c .� . �19�

In terms of the new operator �i
��� and �i

��� just defined, it can
be recast in the form

VC�U2� = −
4

9
U2�

i
��

�

�
�i
���†��i

��� + 
�i
���†��i

���� +
3

4

hi,1

†

+ hi,2
† + hi,3

† ��hi,1 + hi,2 + hi,3� + �hi� → gi�� + h.c. .

�20�

The Coulomb interaction expressed in Eq. �20� is fully Z3
symmetric �see Appendix B for the full expression of Eq.
�20� in terms of the operator hi only�. We remark that the
second line of Eq. �20� is irrelevant for the exciton formation
and can be dropped.

Assuming translational invariance, we can take 
�i
����

= 
����� and 
�i
����= 
�����, and express the interaction as

VC�U2� = − �
k

��k�k
†�k + �k

��k
†�k� , �21�

where �k expresses the exciton gap. Using the total Hamil-
tonian H=�kEk��k

†�k−�k
†�k�−�k��k�k

†�k+�k
��k

†�k�, one can
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FIG. 7. Critical temperature Tc depending on the ratio U1 / t for
several values of t� / t. The critical temperature has been computed
for 100�100 sublattice size and for the optimal value of the bias
V / t=1. Tc tends to zero when t� / t→0.
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derive the averages 
����� and 
����� of the exciton order
parameter from the self-consistent equations


����� =
U2

9 �
k

�̃k
���cos2�22k�

1

Ek
tanh

�Ek

2

� �i cos2�21k�Im��
��

�k
����
�������

+ cos2�24k�Re��
�

�k
����
������� , �22�

for �= �1,2 ,3�. The averages 
����� are related to 
����� by
the simple relation 
�����=−
����� for any �. We defined

�k
�1� = ei�k�eik.e1 −

1

2
�eik.e2 + eik.e3� ,

�̃k
�1� = e−i�k�eik.e1 −

1

2
�eik.e2 + eik.e3� , �23�

and the Z3 symmetric counterparts �k
�2�, �k

�3�, �̃k
�2�, and �̃k

�3�

accordingly. The energy of the quasiparticles reads Ek

=�Ek
2+ ��k�2 and the exciton gap is given by

ei�k�k =
U2

9
cos�22k��cos�21k�4i Im��

�

�k
���
����

+ cos�24k�4 Re��
�

�k
���
���� . �24�

The system of self-consistent Eqs. �22� admits an en-
semble of solutions, all obeying ��
�����=0. As it turns out,
the numerical solution always follows the condition that two
of the ������ are the same and different from the third. Fur-
thermore, the phases of the two equal-amplitude bonds can
be made equal through phase redefinition of the operators
and we can choose, for instance, ��2�=��3����1� without loss
of generality. The other choices are related by Z3 permuta-
tion.

We will now exclusively consider the configuration

��1��� 
��2��= 
��3��, where, due to ������=0, the following
relation holds:


��1�� = − 2
��2�� = − 2
��3�� . �25�

Introducing relation �25� into Eq. �22�, one gets a single
self-consistent equation of the exciton instability,


��1�� =
U2

9 �
k

�̃k
�1� cos2�22k�

1

Ek
tanh

�Ek

2

� �i cos2�21k� Im���k
�1� −

1

2
��k

�2� + �k
�3���
��1��

+ cos2�24k�Re���k
�1� −

1

2
��k

�2� + �k
�3���
��1��� .

�26�

Solution of this can be used to generate the exciton gap �k
using Eq. �24�.

Figure 8 represents the amplitude of the exciton gap ��k�

over the whole Brillouin zone of the graphene bilayer. The
exciton gap vanishes at the Dirac nodal points K1 and K2, as
well as for a wave vector k= 1

2 �R1+R2�, where R1

= 2�
3 �1,�3� and R2= 2�

3 �−1,�3�. The vanishing of the exciton
amplitude at the point 1

2 �R1+R2� marks the breaking of the
Z3 symmetry �Fig. 9�.

With Eq. �26�, one can derive the threshold Coulomb in-
teraction strength, which reads

1

U2c
=

1

9�
k

cos2�22k�
1

Ek
tanh

�Ek

2

� �cos2�24k�Re��̃k
�1��Re��k

�1� −
1

2
��k

�2� + �k
�3���

− cos2�21k�Im��̃k
�1��Im��k

�1� −
1

2
��k

�2� + �k
�3��� .

�27�

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1k1 0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

k2

0
0.1
0.2
0.3
0.4
0.5

|Θk|/t

FIG. 8. The exciton gap amplitude ��k� / t is plotted over the
whole Brillouin zone of the graphene bilayer. The parameters are
t� / t=0.052 and V / t=1. The Coulomb interaction U1=0 and we
have chosen an arbitrary value U2 / t=3 for a 50�50 lattice in the
reciprocal space spanned by k=k1R1+k2R2.
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FIG. 9. �Color online� Contour of the amplitude of the exciton
average 
��1�� in the configuration for which 
��1��� 
��2��� 
��3��.
Here t=2.9 eV, t� / t=0.052, V / t=1, and we used a sublattice of
30�30 carbon atoms.
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Figure 10 shows the variation of Uc2 with V / t for various
values of t� / t. The similarity of this plot to Fig. 6 is obvious.
As for the case treating the Coulomb interaction on dimer
a-d, we see that there is an optimal value V2o / t�1, for
which the threshold U2c is minimal. Moreover as the inter-
layer parameter t� is decreased �by intercalation of insulat-
ing and nondoping atoms�, the Coulomb threshold decreases.

The critical temperature Tc follows from

1 =
U2

9 �
k

cos2�22k�
1

Ek
tanh

Ek

2kBTc

� �cos2�24k�Re��̃k
�1��Re��k

�1� −
1

2
��k

�2� + �k
�3���

− cos2�21k�Im��̃k
�1��Im��k

�1� −
1

2
��k

�2� + �k
�3��� .

�28�

Figure 11 depicts the variation of the critical temperature
with respect to the Coulomb interaction and for various val-
ues of the interlayer hopping parameter t�. As for the dimer
a-d Coulomb interaction, exciton are formed at higher tem-
peratures for smaller t� / t.

The behavior observed in this section are in good agree-
ment with the behavior of the critical temperature Tc and the
Coulomb threshold U1c, observed in the case treating the

Coulomb interaction U1 on dimer a-d. However the Cou-
lomb threshold U2c is smaller than the threshold Uc1. For t
=2.9 eV and t� / t=0.052 at the optimal value of the bias
Vo / t�1, one gets U1c / t�3.5, compared to U2c / t�1.5.

V. CONCLUSIONS

The graphene bilayer system was considered with a short-
ranged Coulomb interaction acting between the nearest and
next-nearest carbon sites in a Bernal stacking scheme of two
carbon layers. The short-ranged Coulomb interaction was in-
troduced for both nearest �U1 for a-d dimer� and second-
nearest �U2 for a-c and b-d dimers� neighbors between the
two layers.

For a given bias V or electron-hole imbalance between the
layers, a critical Coulomb interaction strength exists above
where the excitons form. For the first-neighbor a-d dimer
interaction, the critical strength is Uc / t�3.5 for a bias
V / t�1. The threshold becomes smaller in the case of only
the second-neighbor Coulomb interaction and approximately
equal to U2c / t�1.5 at V / t�1. Hence, doping by equal and
opposite charges of the bilayer system with the voltage dif-
ference applied perpendicular to the bilayer can control the
excitonic properties of the graphene bilayer in a nontrivial
way. The optimal value of the bias V �which gives rise to the
least threshold value Uc� was found to be Vo / t�1. This non-
monotonic dependence on the bias reflects the dependence of
the energy gap between the conduction and valence band
graphene bilayers on the same quantity.

Moreover, we showed that reducing the interlayer hop-
ping parameter t�→0 reduces the threshold near the optimal
bias Uc�Vo� to zero. We suggest that intercalation of nondop-
ing and insulating atomic layers between the carbon layers
could reduce significantly t� in such a way that the screened
Coulomb interaction U obeys the condition U�Uc �for bias
around the optimal value Vo�, and excitons could form. It
thus seems possible that the formation of the exciton gap can
be controlled experimentally by both applying an electric
field perpendicular to the graphene bilayer and tuning the
interlayer hopping.10,24

The next step in the study of the exciton formation would
lie in considering the long-ranged Coulomb interaction be-
tween the two carbon layers. We conjecture that treating the
long-range Coulomb interaction might reduce the threshold
Uc toward a reasonable value accessible by real graphene
bilayer systems.8,25
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APPENDIX A: DIAGONALIZATION OF THE
HAMILTONIAN

In the momentum space the bilayer Hamiltonian �1� reads

H = − �
k

�k
†Hk�k,

where �k
T= �akbkckdk� and

0

2

4

6

8

10

0 1 2 3 4 5

U
2 c

/t

V/t

t⊥/t = 0.052
t⊥/t = 0.02
t⊥/t = 10-3

t⊥/t = 10-5

FIG. 10. Coulomb threshold U2c depending on the bias V for
various interlayer hopping parameters t�. We used t=2.9 eV and
sublattices of 50�50–1200�1200 carbon atoms.
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FIG. 11. Critical temperature for various Coulomb interaction
and different interlayer hopping parameters t�, as given in Eq. �28�.
Here t=2.9 eV, t� / t=0.052, V / t=1 and we used a sublattice with
50�50 carbon atoms. Note the similarity to Tc plot in Fig. 7.
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Hk =�
V t�

�

eik·e� 0 2t�

t�
�

e−ik·e� V 0 0

0 0 − V t�
�

eik·e�

2t� 0 t�
�

e−ik·e� − V

� .

The unitary matrix diagonalizing the Hamiltonian is given by
a string of matrices,

Uk = U0kU1kU2kU3k,

U0k =
1
�2�

ei�k ei�k 0 0

1 − 1 0 0

0 0 ei�k ei�k

0 0 1 − 1
� ,

and

ei�k = ph�� � eik·e�� .

After diagonalizing with U0k, one has

U0k
† HkU0k =�

V + 	k 0 t�e−i�k − t�e−i�k

0 V − 	k t�e−i�k − t�e−i�k

t�ei�k t�ei�k − V + 	k 0

− t�ei�k − t�ei�k 0 − V − 	k

� .

The second rotation is implemented by

U1k =�
cos 1 0 − sin 1e−i�k 0

0 cos 1 0 sin 1e−i�k

sin 1ei�k 0 cos 1 0

0 − sin 1ei�k 0 cos 1

� ,

cos 21 =
V

�V2 + t�
2

,sin 21 =
t�

�V2 + t�
2

.

After diagonalizing with U1k one has

U1k
† U0k

† HkU0kU1k

=�
	k + � t�

2 /� 0 − e−i�kVt�/�
t�
2 /� − 	k + � e−i�kVt�/� 0

0 ei�kVt�/� 	k − � t�
2 /�

− ei�kVt�/� 0 t�
2 /� − 	k − �

� ,

where �=�V2+ t�
2 . The next step in the diagonalization is

affected by

U2k =�
cos 2k − sin 2k 0 0

sin 2k cos 2k 0 0

0 0 cos 2k − sin 2k

0 0 sin 2k cos 2k

� ,

cos 22k =
	k�

�t�
4 + 	k

2�2
, sin 22k =

t�
2

�t�
4 + 	k

2�2
.

After diagonalizing with U2k, one has

U2k
† U1k

† U0k
† HkU0kU1kU2k

=�
� + �k/� 0 0 − e−i�kVt�/�

0 � − �k/� e−i�kVt�/� 0

0 ei�kVt�/� − � + �k/� 0

− ei�kVt�/� 0 0 − � − �k/�
� ,

where �k=�	k
2�2+ t�

4 . The final step in the diagonalization is
given by

U3k =�
cos 3k 0 0 sin 3ke

−i�k

0 cos 4k − sin 4ke
−i�k 0

0 sin 4ke
i�k cos 4k 0

− sin 3ke
i�k 0 0 cos 3k

� ,

cos 23k =
�2 + �k

�V2t�
2 + ��2 + �k�2

, sin 23k =
Vt�

�V2t�
2 + ��2 + �k�2

cos 24k =
�2 − �k

�V2t�
2 + ��2 − �k�2

, sin 24k =
Vt�

�V2t�
2 + ��2 − �k�2

.
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After diagonalizing with U3k, one has

U3k
† U2k

† U1k
† U0k

† HkU0kU1kU2kU3k =�
Ek

++ 0 0 0

0 Ek
+− 0 0

0 0 Ek
−− 0

0 0 0 Ek
−+
� ,

where Ek
��= ��	k

2+�2+ t�
2 �2�k. Combining the four uni-

tary matrices into one, Uk=U0kU1kU2kU3k, the eigenoperators
are obtained as

�
ak

bk

ck

dk

� = Uk�
�k

�k

�k

�k

� .

The unitary matrix U leads to the following expressions
needed in the evaluation of the exciton gap �Eq. �9�	,

U12�k�U43
� �k� =

1

4
ei�k�1 − sin 22k��1 + cos�21 + 24k�	 ,

U42�k�U13
� �k� = −

1

4
ei�k�1 − sin 22k��1 − cos �21 + 24k�	 ,

U42�k�U43
� �k� =

1

4
ei�k�1 − sin 22k�sin�21 + 24k� ,

and

U12�k�U13
� �k� = −

1

4
ei�k�1 − sin 22k�sin�21 + 24k� .

�A1�

APPENDIX B: SECOND-NEIGHBOR COULOMB
INTERACTION

The second-neighbor mean-field Coulomb interaction
with U1=0 can be rewritten in terms of the operator
hi=ci

†ai and gi=di
†bi in the following form

VC = −
4

9
U2�

i
��hi,1

† −
1

2
�hi,2

† + hi,3
† ���hi,1 −

1

2
�hi,2 + hi,3��

+ �hi,2
† −

1

2
�hi,1

† + hi,3
† ���hi,2 −

1

2
�hi,1 + hi,3��

+ �hi,3
† −

1

2
�hi,1

† + hi,2
† ���hi,3 −

1

2
�hi,1 + hi,2��

+
3

4

hi,1

† + hi,2
† + hi,3

† ��hi,1 + hi,2 + hi,3� + h.c. + h → g .

�B1�
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